		٦
L	WORKSHEET #4	I
L		J

Name:	Date:	Period:	Seat #:
Show all work and/or explain using chemistry principles. I	Box your final nu	merical answer(s)	
#1: At 333 K, substance A has a vapor pressure of 1.0 at is prepared and allowed to equilibrate with its vapor. The fraction of A in the original solution? $[x = 0.17]$			
#2: 30.0 mL of pentane (CsH12, d = 0.626 g/mL, v.p. = 5	11 torr) and 45.0	mL of hexane (C6H14, c	d = 0.655 g/mL, v.p. = 150. torr)
are mixed at 25.0 ° C to form an ideal solution.			
a) Calculate the vapor pressure of this solution. [307 torn b) Calculate the composition (in mole fractions) of the va		ith this solution. [Penta	ne: 0.724, hexane: 0.276]
#3: What is the vapor pressure (in mmHg) of a solution of	of 4.40 g of Br2 in	n 101.0 g of CCl4 at 300	K? The vapor pressure of pure
bromine at 300 K is 30.5 kPa and the vapor pressure of C			

#4: A solution has a 1:3 ratio of cyclopentane to cyclohexane. The vapor pressures of the pure compounds at 25 °C are 331 mmHg for cyclopentane and 113 mmHg for cyclohexane. What is the mole fraction of cyclopentane in the vapor above the solution? **[0.494**]

#5: Acetone and ethyl acetate are organic liquids often used as solvents. At 30.0 °C, the vapor pressure of acetone is 285 mmHg and the vapor pressure of ethyl acetate is 118 mmHg. What is the vapor pressure at 30.0 °C of a solution prepared by dissolving 25.0 g of acetone in 22.5 g of ethyl acetate? **[223 mmHg]**

>> Special bonus question: determine the composition (expressed in mole fraction) of the vapor above this solution [acetone: 0.8028, ethyl acetate: 0.1972]

#6: A solution containing hexane and pentane has a pressure of 252.0 torr. Hexane has a pressure at 151.0 torr and pentane has a pressure of 425.0 torr. What is the mole fraction of pentane? **[0.3686]**

#7: The vapor pressure above a solution of two volatile components is 745 torr and the mole fraction of component B (χ_B) in the vapor is 0.59. Calculate the mole fraction of B in the liquid if the vapor pressure of pure B is 637 torr. [0.69]