Name:
Date:
Period:
Seat \#:
Show all work and/or explain using chemistry principles. Box your final numerical answer(s)
\#1: At 333 K , substance A has a vapor pressure of 1.0 atm and substance B has a vapor pressure of 0.20 atm . A solution of A and B is prepared and allowed to equilibrate with its vapor. The vapor is found to have equal moles of A and B . What was the mole fraction of A in the original solution? $[\mathbf{x}=\mathbf{0 . 1 7}]$
\#2: 30.0 mL of pentane ($\mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{~d}=0.626 \mathrm{~g} / \mathrm{mL}$, v.p. $=511$ torr) and 45.0 mL of hexane $\left(\mathrm{C}_{6} \mathrm{H}_{14}, \mathrm{~d}=0.655 \mathrm{~g} / \mathrm{mL}, \mathrm{v} . \mathrm{p} .=150\right.$. torr $)$ are mixed at $25.0^{\circ} \mathrm{C}$ to form an ideal solution.
a) Calculate the vapor pressure of this solution. [$\mathbf{3 0 7} \mathbf{t o r r}$]
b) Calculate the composition (in mole fractions) of the vapor in contact with this solution. [Pentane: 0.724, hexane: 0.276]
\#3: What is the vapor pressure (in mmHg) of a solution of 4.40 g of Br_{2} in 101.0 g of CCl_{4} at 300 K ? The vapor pressure of pure bromine at 300 K is 30.5 kPa and the vapor pressure of CCl_{4} is 16.5 kPa . $\mathbf{1 2 8} \mathbf{~ m m H g}$]
\#4: A solution has a 1:3 ratio of cyclopentane to cyclohexane. The vapor pressures of the pure compounds at $25^{\circ} \mathrm{C}$ are 331 mmHg for cyclopentane and 113 mmHg for cyclohexane. What is the mole fraction of cyclopentane in the vapor above the solution?
[0.494]
\#5: Acetone and ethyl acetate are organic liquids often used as solvents. At $30.0^{\circ} \mathrm{C}$, the vapor pressure of acetone is 285 mmHg and the vapor pressure of ethyl acetate is 118 mmHg . What is the vapor pressure at $30.0^{\circ} \mathrm{C}$ of a solution prepared by dissolving 25.0 g of acetone in 22.5 g of ethyl acetate? [$\mathbf{2 2 3} \mathbf{~ \mathbf { ~ m m H g }}$]
>> Special bonus question: determine the composition (expressed in mole fraction) of the vapor above this solution [acetone: 0.8028, ethyl acetate: 0.1972]
\#6: A solution containing hexane and pentane has a pressure of 252.0 torr. Hexane has a pressure at 151.0 torr and pentane has a pressure of 425.0 torr. What is the mole fraction of pentane? [0.3686]
\#7: The vapor pressure above a solution of two volatile components is 745 torr and the mole fraction of component $\mathrm{B}\left(\chi_{\mathrm{B}}\right)$ in the vapor is 0.59 . Calculate the mole fraction of B in the liquid if the vapor pressure of pure B is 637 torr. [0.69]

